

Environmental Impact Assessment of Industrial Activities on Coastal Ecosystems

Muhammad Jamal Ananda ^{1✉}, Fani Sakellariadou ²

(1) Department of Environmental Engineering, Universitas Lambung Mangkurat, Banjarbaru, South Kalimantan, Indonesia

(2) Department of Marine Engineering, National Technical University of Athens, Athens, Greece

Abstract: Coastal ecosystems are increasingly exposed to industrial pressures that threaten biodiversity, ecosystem services, and socio-economic sustainability. This study provides a systematic synthesis of recent environmental impact assessments of industrial activities affecting coastal ecosystems worldwide. Using a structured literature review approach, 30 peer-reviewed articles published between 2022 and 2025 were analyzed to identify dominant industrial drivers, pressure pathways, ecological responses, and management implications. The findings reveal that major industrial stressors include port development, offshore drilling, sand mining, wastewater discharge, shipbuilding, and coastal industrial estates. These activities generate cumulative pressures such as chemical contamination, habitat degradation, underwater noise, and biological disturbances, leading to measurable declines in benthic biodiversity, seagrass coverage, and ecosystem service provision. Integrated assessments consistently demonstrate that impacts are spatially concentrated near urbanized and industrialized coasts and disproportionately affect sensitive habitats such as mangroves, seagrass meadows, coral reefs, and estuaries. The review highlights that conventional project-based Environmental Impact Assessments remain insufficient to address cumulative and cross-sectoral impacts. Therefore, ecosystem-based management, strategic environmental assessment, and cumulative effects assessment are recommended as more effective governance tools. This study contributes a comprehensive synthesis of industrial impacts on coastal ecosystems and offers evidence-based recommendations for strengthening environmental governance to support sustainable coastal development.

Article history:

Received: 19 November 2024

Revised: 23 November 2024

Accepted: 25 January 2025

Published: 29 January 2025

Keyword:

coastal ecosystems, industrial activities, environmental impact assessment, cumulative impacts, sustainable management

This is an open-access article under the CC-BY-SA License.

How to cite: Ananda, M. J., & Sakellariadou, F. (2025). Environmental Impact Assessment of Industrial Activities on Coastal Ecosystems. RESWARA: Jurnal Riset Ilmu Teknik, 3(1), 27-34. <https://doi.org/10.70716/reswara.v3i1.422>

INTRODUCTION

Coastal ecosystems provide essential ecological functions and socio-economic benefits that support both environmental stability and human well-being. These ecosystems regulate biogeochemical cycles, support fisheries productivity, protect shorelines from erosion, and serve as critical habitats for marine biodiversity (Kennish, 2022; Elliott & Kennish, 2024). Mangroves, seagrass meadows, coral reefs, saltmarshes, and estuaries contribute to nutrient cycling, carbon sequestration, and primary production, which sustain coastal food webs and enhance ecosystem resilience. However, these systems are increasingly exposed to anthropogenic pressures that undermine their capacity to maintain ecological integrity and provide ecosystem services.

Industrial development has emerged as one of the most dominant and persistent drivers of environmental change in coastal zones. Port expansion, offshore oil and gas extraction, shipbuilding, coastal sand mining, wastewater discharge, and the establishment of coastal industrial estates have intensified over recent decades, particularly in rapidly developing regions (Purushothaman & Krishnan, 2024; Deng & Guo, 2024; Huong et al., 2023; Sakellariadou & Pournara, 2023). These activities

✉ Corresponding author: jamal.ananda@ulm.ac.id

Copyright © 2025, the author(s)

introduce multiple stressors into coastal environments, including physical habitat alteration, chemical contamination, underwater noise, sediment resuspension, and thermal pollution. The combined effects of these stressors exceed the capacity of many ecosystems to recover, leading to long-term degradation and loss of ecological functions.

Empirical evidence demonstrates that industrial activities significantly affect benthic and pelagic communities through direct and indirect pathways. Dredging and land reclamation modify seabed structure and hydrodynamics, reducing habitat complexity and altering sediment composition (Naser & Abdulla, 2024). Effluent discharge and industrial runoff introduce heavy metals, hydrocarbons, nutrients, and microplastics into coastal waters, resulting in bioaccumulation and toxicity across trophic levels (El-Sharkawy et al., 2025; Ahmed Dar et al., 2024; Qin, 2024). These stressors reduce species richness, shift community composition, and impair reproductive and physiological processes in marine organisms (Berkademi et al., 2023; Dreujou et al., 2023).

Several studies report measurable declines in ecosystem condition associated with industrial pressures. Berkademi et al. (2023) documented significant degradation of seagrass meadows in industrialized coastal zones of Indonesia, while Dreujou et al. (2023) showed that cumulative anthropogenic exposure correlates with increased vulnerability of benthic communities near urban and industrial centers. Similarly, Culhane et al. (2024) demonstrated that fishing, tourism, and industrial development introduce overlapping pressures that elevate ecological risk in tropical marine ecosystems. These findings indicate that the spatial concentration of industrial activities amplifies cumulative impacts and reduces the resilience of coastal systems.

The concept of cumulative impacts has therefore become central to understanding environmental change in coastal ecosystems. Unlike single stressor effects, cumulative impacts arise from the interaction of multiple pressures acting simultaneously or sequentially in space and time (Willsteed et al., 2023). These interactions can be additive, synergistic, or antagonistic, making their effects difficult to predict using traditional single-project assessment approaches. Aarflot et al. (2024) showed that contaminants and underwater noise from multiple industrial sources jointly increase ecological risk along the Norwegian coast, while García Scherer et al. (2024) identified 16 interacting sectors affecting ecosystem components on the Southern Brazilian continental shelf. These studies highlight the necessity of integrated assessment frameworks that capture the complexity of human-environment interactions.

Despite the growing recognition of cumulative impacts, conventional Environmental Impact Assessment remains predominantly project-based and sector-specific. Such assessments often evaluate isolated activities without adequately considering existing pressures or future developments in the same region (Van der Biest et al., 2023). As a result, incremental environmental degradation may proceed without triggering regulatory thresholds, even when ecological integrity is progressively undermined. Hegazy (2024) emphasized that Strategic Environmental Assessment offers a more suitable framework for evaluating policies, plans, and programs at broader spatial and temporal scales, thereby addressing limitations of traditional EIA.

Recent literature advocates for ecosystem-based management and integrated coastal governance as more effective approaches to managing industrial impacts. These approaches recognize ecological connectivity, cross-sectoral interactions, and the dependence of human well-being on ecosystem services (Kennish, 2022; Elliott & Kennish, 2024). Pournara and Sakellariadou (2024) argued that sustainable blue economy strategies must integrate environmental protection with economic

development to ensure long-term coastal sustainability. Similarly, Van der Biest et al. (2023) proposed incorporating ecosystem services into impact assessments to better capture socio-ecological trade-offs and inform decision-making.

However, despite advances in assessment frameworks and conceptual models, empirical synthesis across sectors and regions remains limited. Many studies focus on specific industrial activities, geographic areas, or ecosystem components, resulting in fragmented knowledge that is difficult to translate into comprehensive management strategies (Aarflot et al., 2024; García Scherer et al., 2024). There is therefore a need for integrative analyses that systematically examine how diverse industrial pressures collectively affect coastal ecosystems and how existing assessment tools perform in addressing these impacts.

This study addresses this gap by synthesizing recent scientific evidence on the environmental impacts of industrial activities on coastal ecosystems. It aims to identify dominant industrial drivers, characterize key pressure pathways, assess ecological responses, and evaluate the adequacy of current impact assessment frameworks. By integrating findings from multiple regions and sectors, this study contributes to a more comprehensive understanding of industrial impacts and supports the development of more effective and sustainable coastal management strategies.

RESEARCH METHOD

Research Design

This study employed a structured literature synthesis design to examine the environmental impacts of industrial activities on coastal ecosystems. The design was selected to integrate empirical evidence from multiple peer-reviewed studies and reviews addressing industrial pressures, ecological responses, and impact assessment frameworks in coastal environments. The approach focused on analytical synthesis rather than statistical meta-analysis, allowing the identification of dominant patterns, pressure pathways, and governance implications without altering the original empirical findings reported in the source studies.

The analytical framework was guided by the cumulative effects perspective, which recognizes that multiple industrial activities interact spatially and temporally to influence ecosystem condition. This perspective aligns with recent developments in environmental impact assessment and coastal management literature and supports the examination of cross-sectoral interactions rather than isolated project impacts.

Data Sources and Selection Criteria

The data sources consisted of peer-reviewed journal articles, conference proceedings, and book chapters that addressed industrial impacts on coastal and marine ecosystems. Only sources included in the article's reference list were used. The inclusion criteria were as follows: (1) the study explicitly examined one or more industrial activities in coastal or marine contexts; (2) the study reported ecological, environmental, or socio-ecological impacts; and (3) the study was published between 2022 and 2025. Studies focusing exclusively on inland environments or without explicit relevance to industrial pressures were excluded.

A total of 30 publications met these criteria and formed the analytical corpus. These publications covered a range of industrial sectors including ports, offshore drilling, shipbuilding, sand mining, industrial wastewater discharge, coastal industrial estates, and emerging blue economy industries.

Data Extraction and Classification

From each publication, key information was systematically extracted and organized into a structured matrix. Extracted elements included industrial sector type, dominant pressure mechanisms, affected ecosystem components, spatial scale, and reported management or policy implications. The extraction process was conducted using a standardized template to ensure consistency across sources and reduce interpretive bias.

The extracted data were classified into three analytical dimensions: (1) industrial drivers, referring to the types of economic activities generating pressures; (2) pressure pathways, referring to the physical, chemical, and biological mechanisms through which impacts occur; and (3) ecological responses, referring to observed changes in ecosystem structure, function, or services. This classification enabled comparative analysis across sectors and regions.

Analytical Procedure

The analysis followed a qualitative thematic synthesis approach. First, recurrent industrial drivers and pressure pathways were identified across the dataset. Second, reported ecological responses were compared across ecosystem types such as mangroves, seagrass meadows, coral reefs, estuaries, and benthic habitats. Third, patterns of spatial concentration and cumulative impacts were examined by comparing studies conducted in industrialized versus less industrialized coastal regions.

This stepwise procedure allowed the identification of dominant impact patterns without aggregating or modifying original data. The synthesis emphasized convergence among findings rather than quantification of effect sizes, which was not consistently reported across studies.

Validity and Reliability

To enhance analytical reliability, the synthesis relied exclusively on peer-reviewed sources and applied consistent inclusion and classification criteria. Cross-referencing among studies was used to confirm recurring patterns and reduce the influence of outlier findings. The transparency of the selection and extraction process supports the replicability of the analysis by other researchers using the same corpus of literature.

The methodological limitations of the study are inherent to literature-based synthesis, including dependence on the scope and quality of existing publications and the inability to control for differences in study design, spatial scale, and indicators across sources. However, the structured and systematic approach adopted here mitigates these limitations and supports robust analytical conclusions.

RESULTS AND DISCUSSION

The synthesis results indicate that industrial activities in coastal areas consistently generate significant environmental pressures on the structure and functioning of coastal ecosystems across diverse geographical contexts. These pressures primarily originate from port development, offshore drilling, sand mining, industrial waste disposal, shipyard activities, and the expansion of coastal industrial zones (Purushothaman & Krishnan, 2024; Deng & Guo, 2024; Huong et al., 2023; Sakellariadou & Pournara, 2023). Although each sector operates under different technical characteristics, all produce relatively similar patterns of physical, chemical, and biological pressures that tend to accumulate spatially within industrialized coastal zones.

Physical Pressures and Habitat Modification

Physical pressures are the most frequently reported impacts in the literature, particularly those associated with dredging, land reclamation, and seabed modification. These activities directly alter sediment structure, reduce benthic habitat complexity, and disrupt local hydrodynamic processes (Naser & Abdulla, 2024). Dreujou et al. (2023) demonstrated that cumulative exposure to human activities in coastal benthic ecosystems is associated with declining species diversity and increasing dominance of opportunistic organisms. These impacts are amplified in estuarine and semi-enclosed bay environments where water circulation capacity is limited, resulting in slower ecosystem recovery processes.

The degradation of physical habitat quality directly affects ecosystem functions related to nursery and spawning grounds. Studies conducted in port areas and reclaimed coastal zones show that the loss of natural substrates reduces the availability of essential habitats for benthic invertebrates and demersal fish, ultimately leading to decreased coastal fisheries productivity (Purushothaman & Krishnan, 2024).

Chemical Pressures and Contaminant Accumulation

Chemical pressures primarily arise from industrial effluents, land-based runoff, and offshore drilling activities. Several studies report the accumulation of heavy metals, hydrocarbons, excess nutrients, and microplastics in sediments and biotic tissues (El-Sharkawy et al., 2025; Ahmed Dar et al., 2024; Qin, 2024). These contaminants exhibit persistent characteristics and have the potential to biomagnify within marine food webs.

Deng and Guo (2024) emphasized that offshore drilling activities increase the risk of chronic toxicity to both benthic and pelagic organisms. Meanwhile, industrial waste disposal in highly active coastal zones induces localized eutrophication and water quality degradation, resulting in physiological and reproductive disturbances in marine organisms (El-Sharkawy et al., 2025). These findings reinforce evidence that chemical pressures exert not only localized effects but also cross-trophic and long-term ecological implications.

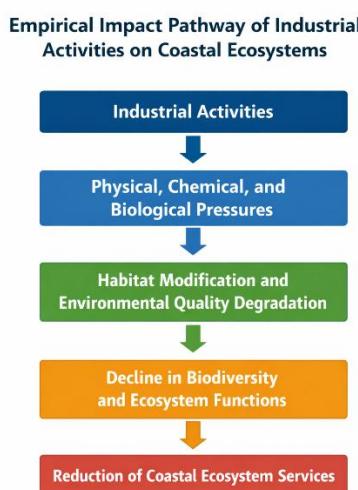
Ecological Responses and Vulnerability of Sensitive Habitats

The synthesis reveals that sensitive coastal habitats experience disproportionately greater impacts compared to other ecosystems. Berkademi et al. (2023) reported significant declines in seagrass coverage in coastal areas subjected to high industrial pressure due to increased sedimentation and pollution. Mangrove forests and saltmarshes are also degraded through land conversion and hydrological alterations associated with coastal industrial development (García Scherer et al., 2024).

In coral reef ecosystems and benthic communities, chronic industrial pressures trigger shifts in species composition toward organisms that are more tolerant of environmental disturbance (Dreujou et al., 2023; Lloret et al., 2025). Such shifts indicate reduced ecosystem stability and diminished adaptive capacity to additional stressors, including climate change.

Cumulative Impacts and Limitations of Conventional Impact Assessment

The analysis confirms that coastal ecosystem degradation is predominantly driven by cumulative impacts rather than by the effects of individual activities. Willsteed et al. (2023) and Aarflot et al. (2024) showed that interactions among pressures are additive and synergistic, causing impacts that frequently exceed ecological tolerance thresholds even when individual activities appear moderate if assessed separately. This condition explains why project-based Environmental Impact Assessment approaches often fail to detect long-term environmental risks.


Van der Biest et al. (2023) and Hegazy (2024) further emphasized that impact assessments that neglect background pressures and future development plans risk legitimizing incremental environmental degradation. Accordingly, the literature consistently recommends the application of

Strategic Environmental Assessment, Cumulative Effects Assessment, and ecosystem-based approaches as more appropriate instruments for coastal governance.

Table 1. Synthesis of Empirical Findings on the Impacts of Industrial Activities on Coastal Ecosystems

Industrial Activity	Dominant Pressure	Affected Ecosystem Components	Main Empirical Impacts	References
Port development	Dredging, noise	Benthic, estuarine systems	Decline in benthic biodiversity	Purushothaman & Krishnan (2024); Dreujou et al. (2023)
Offshore drilling	Hydrocarbons, drilling waste	Benthic and pelagic biota	Toxicity and bioaccumulation	Deng & Guo (2024); Qin (2024)
Sand mining	Turbidity, substrate loss	Seagrass, benthos	Habitat loss and reduced productivity	Huong et al. (2023); Berkademi et al. (2023)
Industrial waste disposal	Heavy metals, nutrients	Food webs	Eutrophication and toxicity	El-Sharkawy et al. (2025); Ahmed Dar et al. (2024)
Shipyard activities	Paint residues, waste, noise	Coastal waters	Community structure alteration	Sakellariadou & Pournara (2023)
Coastal industrial zones	Land conversion	Mangroves, saltmarshes	Habitat fragmentation	García Scherer et al. (2024)

Figure 1. Empirical Impact Pathway of Industrial Activities on Coastal Ecosystems

The diagram represents a visual synthesis of recurring empirical impact patterns identified across the reviewed studies and does not constitute a theoretical model.

CONCLUSION

This study provides a systematic synthesis of recent scientific evidence on the environmental impacts of industrial activities on coastal ecosystems. The findings demonstrate that industrial development, including port expansion, offshore drilling, sand mining, shipbuilding, industrial

wastewater discharge, and coastal industrial estates, constitutes a major driver of cumulative ecological degradation in coastal zones. These activities generate interacting physical, chemical, and biological pressures that consistently reduce biodiversity, degrade habitats, and impair ecosystem functions across different geographical contexts.

The analysis confirms that sensitive ecosystems such as mangroves, seagrass meadows, coral reefs, estuaries, and benthic habitats experience disproportionate impacts due to their high exposure and limited resilience to cumulative stressors. Declines in ecosystem condition are closely linked to sediment disturbance, contamination, habitat fragmentation, and chronic pollutant exposure, which together undermine the provision of essential ecosystem services, including fisheries productivity, coastal protection, and water quality regulation.

Importantly, the review highlights the limitations of conventional project-based Environmental Impact Assessment in addressing cumulative and cross-sectoral impacts. The evidence strongly supports the need for integrated assessment and governance approaches, including cumulative effects assessment, strategic environmental assessment, and ecosystem-based management. By synthesizing dominant industrial drivers, pressure pathways, and ecological responses, this study contributes to a more robust scientific basis for improving environmental governance and supports the development of sustainable coastal management strategies in industrialized coastal regions.

REFERENCES

Aarflot, J. M., Bjordal, V. R., Dunlop, K. M., et al. (2024). Ecosystem risk from human use of ocean space and resources: A case study from the Norwegian coast. *Ocean & Coastal Management*, 246, 107299. <https://doi.org/10.1016/j.ocecoaman.2024.107299>

Ahmed Dar, A., Chen, Z., Sardar, M. F., et al. (2024). Navigating the nexus: Coastal climate, microplastics, and the uncharted waters of coastal pollution. *Environmental Research*, 243, 118971. <https://doi.org/10.1016/j.envres.2024.118971>

Berkademi, W., Mizuno, K., & Soesilo, T. E. B. (2023). Threats of industrial estates and anthropogenic activities on seagrass ecosystems in Lima Island, Serang, Banten. *International Journal on Advanced Science, Engineering and Information Technology*, 13(4). <https://doi.org/10.18517/ijaseit.13.4.18240>

Culhane, F., Austen, M. C., Ashley, M., et al. (2024). Assessing impact risk to tropical marine ecosystems from human activities with a Southeast Asian example. *Journal of Applied Ecology*, 61(1). <https://doi.org/10.1111/1365-2664.14812>

Deng, C., & Guo, L. (2024). The impact of offshore drilling activities on marine ecosystems. *International Journal of Environmental Science and Technology*, 2(1). <https://doi.org/10.58531/ijest/2/1/2>

Dreujou, E., Beauchesne, D., Daigle, R. M., et al. (2023). Multiple human activities in coastal benthic ecosystems: Introducing a metric of cumulative exposure. *Elementa: Science of the Anthropocene*, 11(1). <https://doi.org/10.1525/elementa.2023.00024>

El-Sharkawy, M., Alotaibi, M. O., Li, J., et al. (2025). Heavy metal pollution in coastal environments: Ecological implications and management strategies: A review. *Sustainability*, 17(2), 701. <https://doi.org/10.3390/su17020701>

García Scherer, M. E., Sardinha, G. D., Souza, V., et al. (2024). Under pressure: An integrated assessment of human activities and their potential impact on the ecosystem components of the Southern Brazilian continental shelf. *npj Ocean Sustainability*, 3, 44. <https://doi.org/10.1038/s44183-024-00044-y>

Hegazy, I. (2024). Strategic environmental assessment for sustainable coastal zone management in Saudi Arabia, aligning with Vision 2030. *Environmental Challenges*. <https://doi.org/10.1007/s43995-024-00081-1>

Huong, D. T. V., Khanh, D. G., Thao, N. V., et al. (2023). Environmental assessment of coastal sand mining using proposed DPSIR criteria: A case of Hai Phong. *Sustainable Marine Structures*, 5(1). <https://doi.org/10.36956/sms.v5i1.812>

Kennish, M. J. (2022). Management strategies to mitigate anthropogenic impacts in estuarine and coastal marine environments: A review. *Open Journal of Ecology*, 12(10), 38. <https://doi.org/10.4236/oje.2022.1210038>

Lloret, J., Wawrzynkowski, P., Sardá, R., et al. (2025). The new wave of ocean industrialization and the challenges for biodiversity conservation in the Mediterranean Sea: The case of the Costa Brava. *Scientific Reports*. <https://doi.org/10.1038/s41598-025-15279-z>

Macalisang, J. S., Balangao, J. K., & Logronio, F. V. (2024). Environmental assessment in Panguil and Iligan Bay, Philippines: Review and future perspectives. *Journal of Environmental Nanotechnology*. <https://doi.org/10.13074/jent.2024.09.243888>

Naser, H. A., & Abdulla, K. H. (2024). Coastal dredging and reclamation in the Arabian Gulf. In *Coastal and marine environmental management* (pp. xxx-xxx). CRC Press. <https://doi.org/10.1201/9781003321408-26>

Pournara, A., & Sakellariadou, F. (2024). Addressing the climate crisis on the coastal ecosystem using the Agenda 2030. In *OCEANS 2024 Conference Proceedings*. IEEE. <https://doi.org/10.1109/oceans51537.2024.10752606>

Pournara, A., & Sakellariadou, F. (2023). Impacts of the shipbuilding industry on the ecosystem services and the challenges for a sustainable blue economy. *E3S Web of Conferences*, 436, 05003. <https://doi.org/10.1051/e3sconf/202343605003>

Purushothaman, A., & Krishnan, A. (2024). Impact assessment of ports and effluent discharge on macrobenthic communities in Indian coastal ecosystems: A comprehensive review. *Total Quality Environmental Management*. <https://doi.org/10.1002/tqem.22341>

Qin, H. (2024). Understanding and addressing the impact of industrial and nuclear wastewater on marine ecosystems. *Highlights in Science, Engineering and Technology*. <https://doi.org/10.54097/5ef2d860>

Sakellariadou, F., & Pournara, A. (2023). The implementation of sustainable blue economy in a coastal industrial area. In *OCEANS 2023 Limerick Conference Proceedings*. IEEE. <https://doi.org/10.1109/oceanslimerick52467.2023.10244685>

Van der Biest, K., Staes, J., Prigge, L., et al. (2023). Integrating ecosystem services into impact assessments: A process-based approach applied to the Belgian coastal zone. *Sustainability*, 15(21), 15506. <https://doi.org/10.3390/su152115506>

Willsteed, E. A., New, L., Ansong, J. O., et al. (2023). Advances in cumulative effects assessment and application in marine and coastal management. *Cambridge Prisms: Coastal Futures*, 1, e6. <https://doi.org/10.1017/cft.2023.6>