

Development of Web-Based Monitoring Systems for Industrial Equipment Performance

Handoko Putra ^{1✉}, Ratna Juwita Fauziah ², Karima Aksa ³

(1) Department of Industrial Engineering, Universitas Brawijaya, Malang, Indonesia

(2) Department of Information Systems, Telkom University, Bandung, Indonesia

(3) Department of Computer Science, University of Oran 1 Ahmed Ben Bella, Oran, Algeria

Abstract: The rapid advancement of Industry 4.0 has significantly increased the demand for reliable and scalable monitoring systems to ensure optimal industrial equipment performance. Traditional monitoring approaches are often limited by isolated data acquisition, delayed diagnostics, and insufficient integration with web-based platforms. This study aims to develop and analyze a web-based monitoring system architecture for industrial equipment performance by synthesizing existing monitoring technologies, cloud-based infrastructures, Internet of Things (IoT), and predictive maintenance frameworks. The research adopts a qualitative systematic literature-based development approach by reviewing patents, journal articles, conference proceedings, and industrial case studies related to industrial equipment monitoring systems. The analysis focuses on system architecture, data acquisition mechanisms, communication protocols, dashboard visualization, and performance evaluation methods. The findings indicate that web-based monitoring systems significantly improve real-time visibility, centralized management, and decision-making efficiency. Integration with OPC UA, IoT sensors, cloud platforms, and edge computing enhances scalability, reduces maintenance costs, and enables predictive maintenance strategies. The study concludes that web-based monitoring systems represent a critical foundation for intelligent industrial operations and sustainable equipment management. The proposed conceptual architecture can serve as a reference model for future implementations in manufacturing, energy, and heavy machinery sectors.

Article history:

Received: 28 November 2023

Revised: 29 November 2023

Accepted: 25 January 2024

Published: 31 January 2024

Keyword:

web-based monitoring, industrial equipment, performance monitoring, internet of things, predictive maintenance

This is an open-access article under the CC-BY-SA License.

How to cite: Putra, H., Fauziah, R. J., & Aksa, K. (2024). Development of Web-Based Monitoring Systems for Industrial Equipment Performance. RESWARA: Jurnal Riset Ilmu Teknik, 2(1), 36–44. <https://doi.org/10.70716/reswara.v2i1.387>

INTRODUCTION

The rapid transformation of industrial systems driven by Industry 4.0 has fundamentally altered how industrial equipment is operated, monitored, and maintained. Modern industrial environments increasingly rely on complex machinery that operates continuously under demanding conditions, making equipment performance monitoring a critical requirement. Equipment failures can lead to production downtime, safety hazards, increased operational costs, and reduced product quality. Consequently, effective monitoring systems are essential to ensure operational reliability, efficiency, and sustainability in industrial settings (Li, 2016; Jiang & Cao, 2016).

Early industrial monitoring systems were primarily localized and hardware-centric, focusing on basic parameter measurement such as temperature, pressure, or vibration. These systems often operated in isolation, lacked real-time data accessibility, and required manual intervention for diagnostics and maintenance decisions. Although such approaches provided foundational monitoring capabilities, they were insufficient to support large-scale industrial operations characterized by distributed assets and complex workflows (Zhang et al., 2017). The limitations of traditional monitoring systems became more pronounced as industrial processes grew more interconnected and data-intensive.

✉ Corresponding author: handoko.putra@ub.ac.id

The emergence of web-based technologies has enabled a paradigm shift from isolated monitoring systems toward integrated, networked solutions that provide centralized visibility and remote access. Web-based monitoring systems allow industrial equipment data to be collected, transmitted, stored, and visualized through browser-based interfaces, eliminating dependency on proprietary software installations. Several patented solutions have demonstrated the feasibility of online and remote monitoring systems that integrate data acquisition, processing, and real-time display through centralized platforms (Li, 2016; Yue, 2019; Bartell et al., 2016). These systems support continuous monitoring, alarm notifications, and performance evaluation across geographically distributed industrial assets.

In parallel with industrial innovation, academic research has increasingly focused on the development of web-based monitoring architectures supported by cloud computing and industrial internet technologies. Industrial cloud platforms provide scalable infrastructure for managing large volumes of equipment data, enabling real-time access and historical analysis for performance evaluation and decision support (Xu et al., 2018; Hou et al., 2017). Cloud-based monitoring systems reduce the burden on local devices while enhancing data availability and system flexibility. Such architectures are particularly relevant for industries operating multiple production lines or facilities, where centralized monitoring is essential for effective management.

A critical advancement in web-based monitoring systems is the integration of Internet of Things technologies. IoT-enabled sensors and smart devices facilitate continuous data acquisition from industrial equipment, capturing parameters related to operational conditions and equipment health. Research has shown that IoT-based monitoring systems significantly improve condition monitoring capabilities by enabling real-time sensing, automated data transmission, and early anomaly detection (Paramasivam et al., 2023; Sadiki et al., 2018). These capabilities form the foundation for condition-based and predictive maintenance strategies that aim to reduce unplanned downtime and maintenance costs.

Another important dimension of web-based monitoring systems is data interoperability and communication efficiency. Industrial environments typically involve heterogeneous equipment from multiple vendors, each using different communication protocols. To address this challenge, standardized communication frameworks such as OPC UA and RESTful APIs have been widely adopted. Cross-platform monitoring systems based on OPC UA allow seamless integration between shop-floor devices and higher-level information systems, enabling efficient data exchange without overloading industrial equipment (Chen & Wang, 2022; Wang et al., 2020). This interoperability is crucial for developing scalable and flexible monitoring solutions applicable across various industrial domains.

Visualization and decision support represent key components of web-based monitoring systems. Raw equipment data alone is insufficient to support effective decision-making without appropriate visualization and interpretation. Web-based dashboards provide intuitive interfaces for monitoring key performance indicators such as equipment availability, utilization, efficiency, and fault status. Studies on dynamic KPI monitoring tools and flexible dashboard architectures demonstrate that well-designed dashboards enhance situational awareness and support timely managerial decisions (Pereira et al., 2017; Gouda Shankar et al., 2023). Case studies in power generation and heavy machinery further confirm that dashboard-based monitoring systems improve operational transparency and performance evaluation (Humaira et al., 2022; Kansal et al., 2019).

The growing emphasis on predictive maintenance has further expanded the role of web-based monitoring systems in industrial operations. Predictive maintenance approaches rely on continuous monitoring data combined with analytics to predict equipment failures before they occur. Several studies highlight the integration of web-based monitoring platforms with predictive analytics and machine learning techniques to support proactive maintenance strategies (Mohapatra et al., 2023; Cella et al., 2019). Industry 4.0 frameworks emphasize the importance of continuous data acquisition, cloud-based analysis, and intelligent visualization to enable predictive and intelligent maintenance (Ferreiro et al., 2016; Baldissarelli & Fabro, 2019).

Despite significant progress in monitoring technologies, existing studies often focus on specific components or applications, such as sensor networks, cloud platforms, or predictive algorithms, without providing a comprehensive view of web-based monitoring system development for industrial equipment performance. Some studies emphasize hardware and communication aspects, while others concentrate on dashboard design or maintenance strategies. This fragmented perspective limits the transferability and generalization of monitoring solutions across different industrial contexts (Mourtzis et al., 2020). Moreover, patents and industrial implementations often lack systematic academic analysis that could guide future research and development efforts.

Based on this gap, there is a need for a consolidated and structured examination of web-based monitoring systems that integrates insights from patents, academic literature, and industrial case studies. Such an examination can clarify architectural patterns, functional components, and technological trends that characterize effective monitoring systems for industrial equipment performance. By synthesizing diverse sources, it becomes possible to identify best practices and design principles applicable to a wide range of industrial environments, including manufacturing, energy, and heavy machinery sectors (Sun, 2021; Zhang et al., 2017).

Therefore, this study aims to develop and analyze a conceptual framework for web-based monitoring systems for industrial equipment performance based on an extensive review of existing literature and patented technologies. The primary objective is to examine how data acquisition, communication, processing, and visualization components are integrated within web-based architectures to support performance monitoring and maintenance decision-making. The contribution of this research lies in providing a structured synthesis that can serve as a reference for researchers and practitioners seeking to design, implement, or evaluate web-based monitoring systems in industrial contexts.

RESEARCH METHOD

Research Design

This study employs a qualitative research design based on a systematic literature-based development approach. The research focuses on analyzing and synthesizing existing studies, patents, and documented industrial implementations related to web-based monitoring systems for industrial equipment performance. This design is appropriate because the objective of the study is not to test hypotheses or generate new empirical data, but to develop a consolidated conceptual understanding of how web-based monitoring systems are designed and implemented across industrial contexts.

The research follows an analytical-descriptive approach, emphasizing the identification, classification, and integration of architectural components, functional features, and technological

characteristics reported in prior studies. This approach ensures that the resulting framework reflects established practices and validated implementations rather than speculative or experimental concepts.

Data Sources and Selection Criteria

The data sources consist of peer-reviewed journal articles, conference proceedings, patents, and book chapters that explicitly address industrial equipment monitoring, web-based systems, Internet of Things integration, cloud-based monitoring, and predictive maintenance. The literature reviewed spans publications from 2014 to 2023, reflecting the period in which web-based and Industry 4.0-oriented monitoring systems became prominent.

Selection criteria were applied to ensure relevance and consistency. First, only studies that discuss monitoring systems for industrial equipment were included. Second, the systems described had to incorporate web-based access, online monitoring, or remote visualization features. Third, the selected literature needed to provide sufficient technical detail regarding system architecture, data acquisition, communication mechanisms, or dashboard implementation. Studies focusing solely on theoretical maintenance models without monitoring system implementation were excluded.

Data Collection Procedure

The literature collection process was conducted through systematic searching of academic databases and patent repositories using predefined keywords, including "web-based monitoring," "industrial equipment performance," "online monitoring system," and "predictive maintenance." The search results were screened based on titles and abstracts to identify potentially relevant studies. Full-text reviews were then performed to confirm alignment with the research scope.

Each selected document was cataloged and coded according to publication type, industrial domain, monitoring objectives, and technological components. This structured cataloging facilitated consistent comparison across heterogeneous sources, including academic research and patented industrial solutions.

Data Analysis Technique

Data analysis was carried out using qualitative content analysis. The selected literature was systematically examined to extract key information related to system architecture and functional components. Specifically, the analysis focused on four core aspects: data acquisition mechanisms, communication and interoperability technologies, data processing and storage approaches, and web-based visualization and decision-support features.

The extracted information was grouped into thematic categories to identify recurring design patterns and technological trends. Comparative analysis was then performed to highlight similarities and differences among monitoring systems implemented in various industrial sectors, such as manufacturing, energy, and heavy machinery. This process enabled the identification of common architectural layers and functional requirements that characterize effective web-based monitoring systems.

Synthesis and Framework Development

The final stage of the methodology involved synthesizing the analysis results into a consolidated conceptual framework for web-based monitoring systems. The synthesis process integrated findings from academic studies and patented systems to ensure both theoretical rigor and practical relevance.

The resulting framework emphasizes modular system architecture, interoperability, scalability, and real-time performance monitoring.

Rather than proposing a new system or introducing additional functional components, the framework reflects the aggregation of validated approaches documented in the literature. This ensures that the proposed framework remains grounded in existing industrial practices and can be readily adopted or adapted by practitioners and researchers.

Research Validity and Reliability

To enhance validity, the study relies exclusively on established and peer-reviewed sources, as well as officially registered patents that represent real-world industrial applications. Reliability is supported through transparent selection criteria and systematic analysis procedures that can be replicated by other researchers. By maintaining consistency in data extraction and analysis, the study minimizes subjective interpretation and ensures that conclusions are firmly rooted in the reviewed literature.

RESULTS AND DISCUSSION

System Architecture Characteristics

The synthesis of the reviewed literature and patented systems reveals that web-based monitoring systems for industrial equipment performance consistently adopt a layered architecture. Despite variations in implementation details across industrial sectors, four core layers are repeatedly identified: data acquisition, communication, data processing and storage, and web-based visualization. This architectural consistency is observed in both academic studies and industrial patents, indicating a convergence toward standardized system design practices (Li, 2016; Zhang et al., 2017; Xu et al., 2018).

At the data acquisition layer, industrial equipment parameters are collected using sensors, controllers, and monitoring terminals. Studies focusing on rotating machines, heavy machinery, and power generators report the use of temperature, vibration, load, and operational status data as primary monitoring inputs (Paramasivam et al., 2023; Kansal et al., 2019; Humaira et al., 2022). These inputs form the empirical basis for subsequent performance evaluation and maintenance decision-making.

Data Acquisition and Communication Mechanisms

Table 1 summarizes the data acquisition and communication technologies reported across selected studies. The table demonstrates that IoT-based sensing and standardized communication protocols dominate current implementations. OPC UA and RESTful APIs are consistently used to enable interoperability between heterogeneous equipment and higher-level information systems (Chen & Wang, 2022; Wang et al., 2020).

Table 1. Data Acquisition and Communication Technologies in Reviewed Studies

Study	Industrial Domain	Data Acquisition	Communication Technology
Sadiki et al. (2018)	Manufacturing	Wireless sensors	Wireless sensor network
Chen & Wang (2022)	Multi-platform devices	Industrial controllers	OPC UA
Paramasivam et al. (2023)	Rotating machines	IoT sensors	Internet-based transmission

Wang et al. (2020)	Workshop equipment	Multi-source sensors	RESTful API
Xu et al. (2018)	Mineral processing	Industrial sensors	Industrial cloud services

The dominance of standardized communication protocols highlights the importance of interoperability in industrial environments. Systems that rely on proprietary protocols are less frequently reported, suggesting a shift toward open and scalable communication frameworks that support long-term system evolution.

Data Processing, Storage, and System Scalability

The reviewed studies consistently emphasize centralized data processing and storage using cloud or industrial internet platforms. Cloud-based architectures enable real-time access, historical data analysis, and cross-site monitoring without imposing excessive computational load on local devices (Hou et al., 2017; Xu et al., 2018). Edge computing is often integrated to address latency and data congestion issues, particularly in environments with high-frequency data generation (Paramasivam et al., 2023).

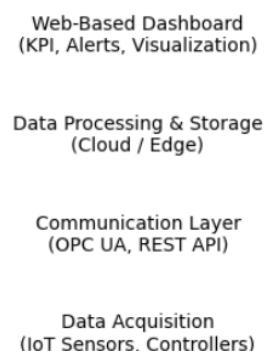
Patented systems further confirm the industrial relevance of centralized processing architectures. Systems described by Bartell et al. (2016) and Sun (2021) demonstrate how centralized servers aggregate equipment data for global performance evaluation and anomaly detection. These findings indicate that scalability and centralized control are critical requirements for modern web-based monitoring systems.

Web-Based Visualization and Performance Evaluation

Visualization plays a central role in transforming raw monitoring data into actionable information. Studies focusing on dashboard development report the use of web-based interfaces to display key performance indicators, alarm notifications, and historical trends (Pereira et al., 2017; Gouda Shankar et al., 2023). These dashboards support decision-makers by providing real-time situational awareness and facilitating rapid response to abnormal equipment conditions.

Table 2. Web-Based Dashboard Features Reported in Literature

Study	Dashboard Features	Monitoring Focus
Pereira et al. (2017)	Dynamic KPI visualization	Equipment performance
Gouda Shankar et al. (2023)	Flexible dashboard layout	Field device monitoring
Humaira et al. (2022)	Performance evaluation dashboard	Power generators
Kansal et al. (2019)	Risk and condition monitoring	Heavy machinery


The consistent use of dashboards across different industrial domains confirms their effectiveness as decision-support tools. Web-based dashboards enable centralized monitoring while maintaining accessibility across devices and locations.

Integration with Predictive Maintenance Strategies

The integration of monitoring systems with predictive maintenance is a recurring theme in the reviewed literature. Continuous monitoring data serves as the empirical foundation for predictive analytics, allowing maintenance actions to be scheduled based on equipment condition rather than fixed intervals (Mohapatra et al., 2023; Baldissarelli & Fabro, 2019).

Industry 4.0-oriented frameworks further emphasize the role of intelligent monitoring systems in enabling predictive and intelligent maintenance strategies (Ferreiro et al., 2016; Mourtzis et al., 2020). The reviewed patents and studies indicate that web-based monitoring platforms are increasingly designed to support early fault detection, maintenance planning, and performance optimization. This integration enhances equipment reliability and reduces operational disruptions without introducing additional system complexity.

Figure 1. Conceptual Architecture of Web-Based Monitoring System

The figure illustrates the layered architecture synthesized from the reviewed studies, highlighting the interaction between data acquisition, communication, processing, and visualization layers.

CONCLUSION

This study has examined the development of web-based monitoring systems for industrial equipment performance through a systematic synthesis of academic literature and patented industrial solutions. The results demonstrate that effective monitoring systems consistently adopt a layered architecture comprising data acquisition, communication, data processing and storage, and web-based visualization. This architectural structure enables continuous monitoring, centralized data management, and real-time performance evaluation across diverse industrial environments.

The findings indicate that the integration of IoT-based data acquisition and standardized communication protocols, such as OPC UA and RESTful APIs, plays a crucial role in ensuring system interoperability and scalability. Cloud and industrial internet platforms further support centralized processing and historical data analysis, while edge computing addresses latency and data congestion challenges in high-frequency monitoring scenarios. Web-based dashboards are confirmed as essential components for translating monitoring data into actionable insights by enabling intuitive visualization of key performance indicators and system status.

Furthermore, the synthesis reveals that web-based monitoring systems serve as a foundational enabler for predictive maintenance strategies. Continuous monitoring data supports early anomaly detection, informed maintenance planning, and improved equipment reliability. By consolidating

insights from multiple industrial domains, this study provides a structured reference for the design and evaluation of web-based monitoring systems. Future research is recommended to validate the synthesized framework through empirical implementation and performance assessment in real industrial settings.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to the institutions and researchers whose published studies and documented industrial implementations provided valuable insights for this research. This work was supported by academic discussions and scholarly resources that contributed to the development and synthesis of the web-based monitoring system framework. The authors also appreciate the constructive feedback and academic environment that supported the completion of this study.

REFERENCES

Ahmadi, M., Riddar, C., & Leishman, A. (n.d.). Process energy intensity monitoring and diagnostic system (Patent).

Aksa, K., Aitouche, S., & Bentoumi, H. (2021). Developing a web platform for the management of the predictive maintenance in smart factories. *Wireless Personal Communications*. <https://doi.org/10.1007/S11277-021-08290-W>

Baldissarelli, L., & Fabro, E. (2019). Manutenção preditiva na indústria 4.0. *Scientia cum Industria*, 7(2). <https://doi.org/10.18226/23185279.V7ISS2P12>

Bartell, S. T., Richardson, G. A., & Rydland, C. J. (2016). Global monitoring system for critical equipment performance evaluation (Patent).

Bi, W., & Ruan, X. (2014). Design and implementation of online monitoring system for large-scale mechanical and electrical equipment based on embedded techniques. In *Proceedings of the conference on embedded systems*. https://doi.org/10.1007/978-81-322-1759-6_30

Cella, C. H., Jr., Duffy, G. W., McGuckin, J. P., et al. (2019). Methods and systems for data collection, learning, and streaming of machine signals for analytics and maintenance using the industrial internet of things (Patent).

Chen, W., & Wang, P. (2022). Cross-platform device monitoring system based on OPC UA. In *Proceedings of the International Conference on Information Technology*. <https://doi.org/10.1109/ICTech55460.2022.00089>

Ferreiro, S., Konde, E., Fernandez, S., et al. (2016). Industry 4.0: Predictive intelligent maintenance for production equipment. *Procedia PHM*, 3(1). <https://doi.org/10.36001/PHME.2016.V3I1.1667>

Gouda Shankar, S., Sadiq, S., & Ashok, S. (2023). A flexible dashboard architecture for monitoring the performance of field devices. *International Conference on Industrial Engineering Technologies*. <https://doi.org/10.1109/iciet57285.2023.10220726>

Hou, Y., Xu, Q., Li, Y., et al. (2017). Monitoring system for mineral processing equipment based on IoT and industrial cloud computing. *Journal of Computer Integrated Manufacturing Systems*, 23(9). <https://doi.org/10.13196/j.cims.2017.09.016>

Humaira, P., Fauziah, R. J., Bagaswara, T., et al. (2022). Modeling of web-based monitoring dashboard for performance evaluation of power generator machines (Case study: Indonesia State Electricity

Corporation). In Proceedings of ICIMTech. <https://doi.org/10.1109/ICIMTech55957.2022.9915062>

Ibatulin, M. (2023). Development of system and methods of predictive maintenance in production using industrial sensors. In Proceedings of ICIEAM. <https://doi.org/10.1109/ICIEAM57311.2023.10139261>

Jiang, W., & Cao, X. (2016). Monitoring acquisition equipment and industrial equipment monitoring, diagnosis and maintenance system thereof (Patent).

Kansal, A., Gupta, M., Setia, G., et al. (2019). Heavy machinery condition and risk monitoring system for industrial automation. International Journal of Recent Technology and Engineering. <https://doi.org/10.35940/ijrte.d4286.118419>

Li, R. (2016). On-line monitoring system for industrial equipment (Patent).

Mohapatra, A. G., Mohanty, A., Pradhan, N. R., et al. (2023). An Industry 4.0 implementation of a condition monitoring system and IoT-enabled predictive maintenance scheme for diesel generators. Alexandria Engineering Journal. <https://doi.org/10.1016/j.aej.2023.06.026>

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2020). Intelligent predictive maintenance and remote monitoring framework for industrial equipment based on mixed reality. Frontiers in Mechanical Engineering. <https://doi.org/10.3389/fmech.2020.578379>

Paramasivam, A., Abimanyu, J. P., Pittu, P. S. K., et al. (2023). The design and development of an Internet of Things-based condition monitoring system for industrial rotating machines. Proceedings of ECSA. <https://doi.org/10.3390/ecsa-10-16240>

Pereira, A., Petrali, P., Pagani, A., et al. (2017). Dynamic monitoring of key-performance indicators in industrial environments. In Proceedings of INDIN. <https://doi.org/10.1109/INDIN.2017.8104932>

Sadiki, S., Ramadany, M., Faccio, M., et al. (2018). Implementation of a remote monitoring system for condition-based maintenance using wireless sensor network: Case study. Procedia Manufacturing.

Silva, P. H., Domenech, M. C., Rauta, L. R. P., et al. (2015). Controle e monitoramento remoto de máquinas industriais por meio de smart gateways na web das coisas. Anais do Computer on the Beach.

Sun, F. (2021). Engineering machine remote monitoring system based on Internet (Patent).

Wang, P., He, Y., Wu, P., et al. (2020). Equipment condition monitoring system based on multi-source heterogeneous data. In Proceedings of CYBER. <https://doi.org/10.1109/CYBER50695.2020.9278955>

Xu, Q., Li, Y., & Chu, Y. (2018). Research on condition monitoring platform for mineral processing equipment based on industrial cloud. In Proceedings of ICCE-China. <https://doi.org/10.1109/ICCE-CHINA.2018.8448908>

Yue, C. (2019). Remote on-line monitoring system for industrial equipment and working process of remote on-line monitoring system (Patent).

Zhang, J., Sun, X., Xue, P., et al. (2017). Integrated use method of industrial equipment real-time monitoring software and information system (Patent).